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Critical-state model for harmonic generation in a superconducting microwave resonator
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A critical-state model is developed for the treatment of the nonlinear ac response of a superconducting
coaxial-type transmission line. Analytical results are presented for the resistance and reactance as well as the
response at overtone frequencies. Center conductors of both elliptical and rectangular thin-film cross section
are considered. The dominant response, in the case of the elliptical geometry, is found to be independent of the
aspect ratio of the ellipse. Significant differences are found between the elliptical and strip geometries. These
differences are due to the difference in structure of the critical state in the two geometries. The model is applied
to resonators with the assumption that end effects can be neglected. Qualitative agreement is found with
experimental results.@S0163-1829~97!01317-9#
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I. INTRODUCTION

There is presently considerable interest in the use of h
temperature superconductors~HTS’s! in passive microwave
devices such as filters for wireless communication.1–4 Many
people believe that this will be one of the first widespre
applications for HTS’s.1 Recent prototypes of HTS filter
have shown performance superior to convential filters by
least an order of magnitude.1,3,4 This improvement is due to
the lower losses in HTS as compared with conventional m
tallic conductors such as copper. Lower conductor loss
resonator translates into a largerQ and, therefore, a smalle
bandwidth. High-Q resonators also provide a convenie
method for studying fundamental properties of HTS’s. In t
Meissner state the reactive part of the surface impedenc
proportional to the penetration depth. Therefore, the te
perature and field dependence of the surface impedence
yield information about the lower critical fieldHc1 and about
the symmetry of the order parameter.5 High-Q resonators are
also a convenient way of studying vortex dynamics and hi
dissipation regimes because large transport currents ca
created even at modest input power.

One aspect of HTS’s that distinguishes them from c
ventional conductors, and complicates device design, is t
nonlinearity, which manifests itself in a dependence of
surface impedance on the input power or transport cur
amplitude.5,6 One consequence of the power dependanc
that the low-power surface impedance is no longer a su
cient figure of merit for the material. Instead, the surfa
impedance must be determined at the specific powe
which the device will be operated.5 Nonlinearities also lead
to harmonic generation~HG! and two-frequency intermodu
lation ~IM !. The occurrence of IM in filters can cause vario
problems such as the generation of spurious targets in r
receivers.5 A thorough understanding of all these effects
essential before high-quality devices can be successfully
signed and constructed. While these effects are present
at small input powers, they become much more pronoun
550163-1829/97/55~17!/11823~9!/$10.00
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as the power increases. Experimental evidence suggests
the nonlinearity is associated with the onset of vortex p
etration and hysteresis.5,6 Previous modeling of the data ha
assumed a coupled-grain model at low input power.2 This
model was successful in fitting the behavior of both the
sistive and reactive responses of the surface impedance
higher input powers a modified Bean model was employe2

This model was able to quantitatively explain the power d
pendence of the surface resistance. Sridhar propose
critical-state model for the resistance and reactance.7 Thus
far, satisfactory models to explain HG and IM in either t
low-power or high-power regions have been lacking.2

The purpose of this paper is to provide a model, similar
Sridhar’s, for describing the power dependence of the s
face impedence and HG due to quasistatic vortex penetra
and hysteresis. We will employ a field-independent critic
state model with the assumption thatHc150 ~Bean model!.8

This should be an excellent approximation when the aver
self-field is greater thanHc1. We will also neglect any effects
due to surface barriers.9 A model describing two-frequency
IM will be presented in a separate paper.

II. THE MODEL

We consider a one-dimensional coaxial-type transmiss
line. The outer conductor is a superconducting cylindri
shell of radiusR. The inner conductor is either a superco
ducting wire of elliptical cross section with semimajor ax
a and semiminor axisb, or a superconducting thin-film strip
of width 2W and thicknessd ~see Fig. 1!. The center con-
ductor carries a transport currentI T(t)5I T0 cos(v0t). We
assume that for the elliptical geometryl!a, and that for the
strip geometry eitherl,d!W or d,l,L!W, wherel is
the London penetration depth andL52l2/d is the two-
dimensional screening length.10 We will also assume thatR
is large enough that the center conductor can be treated
it were isolated. It can be shown that this is not a very
strictive assumption.11–13These assumptions allow us to u
11 823 © 1997 The American Physical Society
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11 824 55J. McDONALD, JOHN R. CLEM, AND D. E. OATES
the well-known results for infinitely long, isolated elliptica
wires and strips.14–16

When I T0 becomes large enough, vortices will start
penetrate into the center conductor from its surface. In
calculations we assume thatHc150 and that there are n
surface barriers, so vortex penetration occurs for allI T0.0.
For simplicitly we will neglect any vortex penetration in th
outer conductor. We assume thatv0 is small enough that we
can treat the vortex motion quasistatically. This will be do
using a critical-state model with field-independentJc .

14–16

There are significant differences between the critical s
in an elliptical wire and that in a strip. As shown in Ref. 1
in an elliptical wire~see Fig. 2! the flux fronts are concentric
ellipses~they all have the same aspect ratioa5b/a). When
the transport current is decreased from its peak valueI T0,
there will be three distinct regions in the wire. There is
central regionuxu,a0 which is both flux and current free
The size of this region depends on the ratio of the p
current I T0 to the saturation currentI c5paa2Jc . The
middle regiona0,uxu,a1 contains frozen-in flux from the
previous front. The current density in this region
Jy(x)51Jc . The outer regiona1,uxu,a is occupied by
the new front, and the current density isJy(x)52Jc . Thus,
the critical state in an elliptical wire is similar to that in
circular wire.14 In the case of a strip~see Fig. 3!, there is a
central regionuxu,a0, which is shielded from magnetic flu
but contains a screening-current density. The middle reg
a0,uxu,a1 contain frozen-in flux from the previous fron
The current density in these regions is not equal to1Jc but
rather is a function of position. The outer regio
a1,uxu,W are occupied by the new front. The current de
sity in these regions isJy(x)52Jc .

15,16

FIG. 1. A sketch of the two geometries considered in this pap
The outer conductor is a cylindrical shell of radiusR. The center
conductor is either an elliptical wire with aspect ratioa5a/b or a
thin-film strip of width 2W and thicknessd, where a!R and
W!R. They axis points into the page.
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The voltage drop per unit lengthV(t) is given by Fara-
day’s law

V~ t !5
d

dt F E0RdxBz~x,t !G , ~1!

whereBz is thez component of the flux density in thex-y
plane. SinceI T(t) is periodic with periodT52p/v0, V(t) is
periodic with the same period. We may, therefore, expr
V(t) as a Fourier series

V~ t !5I T0(
n51

`

@Rn cos~nv0t !2Xn sin~nv0t !#, ~2!

where the coefficientsRn andXn are given by

Rn5
v0

pI T0
E
0

T

dtV~ t ! cos~nv0t ! ~3!

and

Xn5
2v0

pI T0
E
0

T

dtV~ t ! sin~nv0t !, ~4!

respectively. The dissipated power per unit length is giv
by

Pdiss5
1

TE0
T

dtIT~ t !V~ t !. ~5!

Inserting Eq.~2! into Eq. ~5! yields

Pdiss5
1

2
I T0
2 R1 . ~6!

Equation~6! implies thatR1 is the resistance per unit length
X1 is the reactance per unit length which is related to
inductance and to the resonant frequency. WhenI T0→0,
V(t) becomes purely inductive; therefore,X1→X0 where
X0 is the geometric reactance per unit length. Forn.1, Rn
and Xn yield information on the generation of higher ha
monics in the transmission line.

III. RESULTS

A. Elliptical geometry

We will first consider the case where the center conduc
has an elliptical cross section. The expressions fora0, a1,
andBz can be derived from the results of Norris.14 The ex-
pressions fora0 anda1 are

a05aA12F ~7!

and

a1~ t !5H aA12F sin2~v0t/2!, 0,t,T/2,

aA12F cos2~v0t/2!, T/2,t,T,
~8!

whereF5I T0 /I c . The expressions forBz are given in Ap-
pendix A. If the expressions forBz are used in Eq.~1! the
result is

r.
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55 11 825CRITICAL-STATE MODEL FOR HARMONIC . . .
FIG. 2. The critical state for an elliptical wire
upon decreasing the transport current from t
peak value I T0. There is a central region
0,x,a0 in which both the current density an
flux density vanish. There is a middle regio
a0,x,a1 carrying a current density
Jy(x)51Jc and an outer regiona1,x,a carry-
ing a current densityJy(x)52Jc . There is a
nonzero flux density in both the middle and out
regions. In the case shown,a050.5a and
a150.75a.
g

te
e
i
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u-
V~ t !52I T0
m0v0

2p
sin~v0t ! lnSR1AR22~12a2!a1~ t !

2

~11a!a1~ t !
D .
~9!

The logarithm can be expanded around largeR to obtain

V~ t !5I T0
m0v0

2p
sin~v0t !H 2 lnS 2

~11a!

R

a D1 lnS a1~ t !a D
1OF S ~a1~ t !!

R D 2G J . ~10!

The first and largest term is the voltage drop per unit len
in the absence of vortex penetration (I T0→0). The second
term is the dominant term arising from the quasistatic vor
penetration. It is interesting to note that this term is indep
dent ofa. The third term leads to small corrections and w
be neglected.

Using Eqs.~3! to calculateR1, we find

R15
m0v0

2p

1

pF2 @F~22F !12~12F ! ln~12F !#. ~11!

Inserting Eq.~11! into Eq. ~6!, we obtain Norris’ result for
the losses in an elliptical wire14
th

x
n-
ll

Pdiss5
v0

2p

m0I c
2

p
@F~12F/2!1~12F ! ln~12F !#. ~12!

Using Eq.~4! to calculateX1 we obtain

X15X01DX1 , ~13!

whereDX1 is given by

DX15
m0v0

4p F2
1

2
1
2A12F~22F22A12F !

F2

2 lnS 22F12A12F

4 D G ~14!

and

X05
m0v0

2p
lnS 2

~11a!

R

a D . ~15!

DX1 is the power-dependent or nonlinear part of the re
tance, whileX0 is the geometric reactance.

The coefficients for all higher harmonics can be calc
lated analytically. For the even harmonics it is found that

R2n5X2n50 . ~16!
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FIG. 3. The critical state in a thin-film strip
upon decreasing the transport current from t
peak valueI T0. There is a central regionuxu,a0
where the flux density vanishes but not the cu
rent density. There is a middle region in whic
the current density is not equal to1Jc but rather
is a function of position~the expression is given
in Appendix A!, and there is an outer regio
where the current density isJy(x)52Jc . There
is a nonzero flux density in both the middle an
outer regions. In the case shown,a050.5a and
a150.75a.
th

is

d.
The expressions forR3 andX3 are given in Appendix B. The
expressions for the higher harmonic coefficients are leng
and have, therefore, been omitted.

For F!1, the leading-order behaviors ofR1, DX1, R3,
andX3 are given by

R15
m0v0

2p

F

3p
, ~17!

DX15
m0v0

4p

F

2
, ~18!

R35
m0v0

2p S 2
F

5p D , ~19!

X35
m0v0

2p

F2

64
. ~20!

B. Strip geometry

We next consider the case where the center conductor
thin-film strip. The expressions fora0 anda1 are

a05WA12F2, ~21!

and
y

a

a1~ t !5HWA12F2 sin4~v0t/2!, 0,t,T/2,

WA12F2 cos4~v0t/2!, T/2,t,T.
~22!

The expressions forBz ~Refs. 15 and 16! are given in Ap-
pendix A. If the expressions forBz are used in Eq.~1!, the
result is

V~ t !52I T0
m0v0

2p
sin~v0t ! lnSR1AR22a1~ t !

2

a1~ t !
D . ~23!

The logarithm can be expanded around largeR to obtain

V~ t !5I T0
m0v0

2p
sin~v0t !H 2 lnS 2RW D1 lnS a1~ t !W D

1OF S ~a1~ t !!

R D 2G J . ~24!

The third term is a small correction and will be neglecte
The expressions forR1 andX1 are found to be

R15
m0v0

2p

2

pF2 @~11F ! ln~11F !

1~12F ! ln~12F !2F2#, ~25!

which yields Norris’ result for the losses in a thin-film strip14
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FIG. 4. Response of a resonator, with eith
an elliptical ~a! or strip ~b! center conductor, at
frequenciesv0 and 3v0. The parameter values
used wereZ0550 V, f 05v0/2p51.6 GHz,
l 53 cm,W or a575mm, d or 2b50.3mm, and
Jc5106 A/cm2. It was assumed that the dielectr
constant characterizing the region between
conductors ise510.
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Pdiss5
v0

2p

m0I c
2

p
@~11F ! ln~11F !1~12F ! ln~12F !2F2#

~26!

and

X15X01DX1 , ~27!

whereDX1 is given by

DX152
m0v0

4p F11
2@42~22F !A12F2~21F !A11F#

F2

1 lnS ~22F12A12F !~21F12A11F !

16 D G , ~28!

and

X05
m0v0

2p
lnS 2RW D . ~29!

The coefficients for the higher harmonics can be calcula
analytically. The even harmonics vanish:

R2n5X2n50 . ~30!

The expressions forR3 andX3 are given in Appendix B.
The leading-order behaviors forF!1 are
ed

R15
m0v0

2p

F2

3p
, ~31!

DX15
m0v0

4p S 5F2

16 D , ~32!

R35
m0v0

2p S 2
F2

5p D , ~33!

X35
m0v0

2p

F2

32
. ~34!

IV. COMPARISON WITH EXPERIMENT

Resonators have a finite length. Therefore, if we wan
apply our results to a resonator, we must assume that
fringing effects due to the ends of the resonator can be
glected, and our expressions forV(t), Rn , Xn , and Pdiss
must be multiplied by the resonator length to make th
dimensionally correct. It can be shown that for a resonato
lengthl , X0 is related to the characteristic impedenceZ0 by
l X05pZ0. In a typical experiment a current with amplitud
I T0 is established in the center conductor. The output volt
signal is analyzed to determine the distribution of pow
among the various frequencies inside the resonator.
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11 828 55J. McDONALD, JOHN R. CLEM, AND D. E. OATES
amount of output power at a given frequency can then
plotted versus the input power to determine the degree
nonlinearity in the resonator. The expression for the tim
averaged available incident powerPinc in terms of the peak
current I T0 is Pinc.(1/2)I T0

2 l X0. The relation between the
time-averaged output powerPout and Pinc is given by
Pout5r v

2Pinc , wherer v is the voltage insertion ratio. In term
of Sparameters,r v5uS21u. The insertion loss~IL ! is given by
IL5220 log10r v dB. In HG measurements a well-matche
transmission-line sample is used.4 Therefore, the IL is prima-
rily determined byPdiss and not by coupling loss. Therefore
the time-averaged input powerPin is given byPin5Pinc , and
Pout is given byPout5Pin2Pdiss. The output power is dis-
tributed among the various harmonics. The power spect
at frequencynv0 is proportional toRn

21Xn
2 . The amount of

output power at frequencynv0 @Pout(nv0)# is given by the
product of the time-averaged output power and the frac
of power stored at that frequency,

Pout~nv0!5Pout3S Rn
21Xn

2

(n851
`

~Rn8
2

1Xn8
2

!D . ~35!

Figure 4 shows plots ofPout(v0) andPout(3v0) versusPin
for both the elliptical and strip geometries. The slope of
Pout(v0) versusPin curve is equal to one for both geom
etries. The slope of thePout(3v0) versusPin curve is equal
to two in the elliptical geometry and equal to three in t
strip geometry. It can be shown that the third-order interc
~TOI! for the elliptical geometry is given by

Pin
~TOI!5

1

2 S 5pI c
m0~v0/2p!l D 2~pZ0!

3. ~36!

For the strip geometry the TOI is given by

Pin
~TOI!5

~pI cZ0!
2/@m0~v0/2p!l #

2A~1/5p!21~1/32!2
. ~37!

Using the parameter choicesZ0550V, f 05v0/2p
51.6 GHz, l 53 cm,W or a575m m, d or 2b50.3 mm,
and Jc5106 A/ cm2, the TOI, defined as
10 log10@Pin

~TOI!/mW# dBm, is equal to172.2 dBm for the
elliptical geometry and157.7 dBm for the strip geometry.

The values of the TOI calculated from Eq.~37! are in
reasonable agreement with experimental values for copl
TBCCO lines given in Table II of Ref. 20, although th
ground plane and dielectric geometries are different. A be
way to compare our theory to experiment, however, is
examine how the TOI depends on line width, line length, a
temperature, as was done in Table III of Ref. 20. Accord
to Eq.~37!, the change in the TOI when only the width of th
line is changed from 2W1 to 2W2 is
D TOI520 log10(W2 /W1). When only the length of the line
changes froml 1 to l 2, the corresponding TOI difference i
D TOI510 log10(l 1 /l 2), and when only the temperature
changed fromT1 to T2, then D TOI520 log10@Jc(T2)/
Jc(T1)#. Table I shows a comparison of experimental20 and
theoretical values forD TOI. Excellent agreement betwee
theory and experiment is found with regard to the wid
dependence, and fair agreement is found with the depen
cies on length and temperature.
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The ratior5(Dv0 /v0)/D(1/2Q) has been stressed as a
important figure of merit characterizing the nonlinearity
resonators.6,17–19 This quantity can be determined expe
mentally from the resonance curve.Dv0 is the shift in posi-
tion of the peak of the curve, andQ is the reciprocal of the
bandwidth. This ratio is also related to the theoretical qu
tities R1 andDX1. The change in the bandwidthD(1/Q) is
given by

DS 1QD5
R1

X1
, ~38!

and the relative shift in resonant frequencyDv0 /v0 is given
by

Dv0

v0
5
1

2

DX1

X1
. ~39!

Substituting these expressions into the expression for
yields

r5
DX1

R1
. ~40!

Therefore,r provides a simple way to compare experime
and theory.

In Nb microstrip resonators, the quantityr was found to
be essentially constant (;1) except at temperatures close
Tc .

6 In this case a plot ofDv0 /v0 versusD(1/2Q) should
be a straight line with slope of order unity at smaller valu
of F, and should deviate from a straight line at largerF
values. Figure 5 shows such a plot using our expressions
R1 andDX1.

A frequency-independentr value of order unity is char-
acteristic of the nonlinearity caused by vortex pinning a
hysteresis. For other mechanisms the magnitude and
quency dependence of ther value may be quite
different.18,19,21 For the case of the low-field behavior o
weak links, ther value is often one or two orders of magn
tude larger and is inversely proportional to th

TABLE I. Comparison of the theoretical and experimental r
sults forD TOI as the width, length, and temperature are var
independently. The experimental values were taken from Ref.
The values for the critical current density at a given temperat
were determined by taking the average of all accurately repo
values at that temperature.

Parameter D TOI ~dBm!

Experiment Theory

Width ~W → 2 W! 6.2 6.0
~W → 4 W! 12.2 12.0
~W → 8 W! 18.4 18.1

Length ~14 mm→ 1 mm! 9.7 11.5
~14 mm→ 5 mm! 3.1 4.5
~5 mm→ 1 mm! 6.5 7.0

Temperature~100 K→ 90 K! 15.6 12.3
~90 K→ 80 K! 5.4 3.1
~80 K→ 70 K! 5.5 5.8
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FIG. 5. Plot ofDv0 /v0 vs D(1/2Q) for a
resonator with an elliptical or strip center condu
tor. The curves end atF51. The initial slopes of
the lines, corresponding toF!1, are 2.4 and 1.5
for the ellipse and strip, respectively. Th
straight-line behavior is observed experimental
nd
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frequency.18,19,21 This has been observed in granular a
polycrystalline samples in small fields.21

V. SUMMARY

We have presented a critical-state model for the nonlin
ac response of a superconducting coaxial-type transmis
line. This model can be applied to superconducting mic
wave resonators if fringing effects due to the resonator e
are neglected. Center conductors of both elliptical and th
film cross section were treated. For the elliptical geome
the results were found to be independent of the aspect
of the ellipse. For small currents the impedance in the el
tical geometry was found to be proportional to the curr
amplitude, while in the strip geometry it was found to
proportional to the square of the current amplitude. Analy
cal formulas were derived for the input power at the thi
order intercept for harmonic generation. These results sh
be relevant to experiments dealing with the design and t
ing of superconducting microwave resonators and filters.
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APPENDIX A: FLUX DENSITY AND CURRENT DENSITY
EXPRESSIONS

The expressions forJy(x) and Bz , for the case of an
elliptical geometry, are

Jy~x!5H 0 , 0,x,a0 ,

1Jc , a0,x,a1 ,

2Jc , a1,x,a,

~A1!

and

Bz~x!55
0 , 0,x,a0 ,

2BeS x/a

11a
2 f ~a0! D , a0,x,a1 ,

2BeS 2 f ~a1!2 f ~a0!2
x/a

11a D , a1,x,a,

2Be~2 f ~a1!2 f ~a!2 f ~a0!!, a,x,R,
~A2!

where the functionf is given by
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f ~u!5
~u/a!2

x/a1A~x/a!22~12a2!~u/a!2
, ~A3!

and the scaling fieldBe is defined as

Be5m0aJca. ~A4!

For the case of the strip geometry the expressions are

Jy~x!55
2Jc
p F tan21SAW22a0

2

a0
22x2 D 22 tan21SAW22a2

a22x2 D G , 0,x,a0 ,

JcF12
4

p
tan21SAW22a2

a22x2 D G , a0,x,a1 ,

2Jc , a1,x,W,

~A5!

and

Bz~x!55
0 , 0,x,a0 ,

2Bf lnS AW22x2

AW22a0
22Ax22a0

2D , a0,x,a1 ,

2BfF lnS Aux22W2u

uAx22a0
22AW22a0

2u D 22 lnS Aux22W2u

uAx22a22AW22a2u D G , a,x,R,

~A6!
l

where the scaling fieldBf is defined by

Bf5
m0Jcd

p
. ~A7!

APPENDIX B: COEFFICIENTS FOR THIRD HARMONIC
RESPONSE

The expressions forR3 andX3 for the case of an elliptica
geometry are

R35
m0v0

2p

1

3pF4$48F272F2122F3

1F41@48~12F !16F2#~12F ! ln~12F !%,

~B1!

and
s,

S
os
s.

ir-

a

X35
m0v0

2p

1

8F4@F
4116F32144F21256F

2128164~22F !A~12F !3#. ~B2!

For the case of strip geometry the expressions are

R35
m0v0

2p

1

3pF4 @2F42144F21@48~11F !16F2#

3~11F !ln~11F !1@48~12F !16F2#

3~12F ! ln~12F !#, ~B3!

and

X35
m0v0

2p

1

4F4@F
42144F22128

132~F223F12!A12F132~21F !A~11F !3#.

~B4!
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